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Figure 1: The six conditions for embodied two-handed interactions [dominant, non-dominant] for data exploration in VR: D
(Direct): the point of contact is attached directly to the VR controller; I (Indirect): the contacting point has an offset from the
VR controller; F (Fixed): the data visualization is shown in a fixed position in VR.

ABSTRACT
Embodied interaction plays a crucial role in facilitating effective
data exploration within immersive environments, enhancing user
experience, understanding, and exploring complex data presented
in the virtual space. While embodied two-handed interaction has
demonstrated considerable potential, there remains a gap in under-
standing how varying levels of embodiment impact asymmetric
two-hand interactions for immersive data exploration. In this study,
we systematically investigate this aspect by combining three set-
tings (direct, indirect, and fixed) on the visualization control hand
and two settings (direct, indirect) on the action hand. This combina-
tion results in six conditions that span varying levels of embodiment.
We compared these conditions under two fundamental visualiza-
tion tasks, focusing on curve brushing and object manipulation.
Our discussion revolves around the use of techniques related to the
specific requirements of the tasks, the characteristics of each condi-
tion, and users’ experience and expertise in the VR environment.
Building upon these discussions, we offer suggestions for designing
embodied two-handed interactions for immersive data exploration.
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1 INTRODUCTION
Virtual Reality (VR) technologies provide a 3D environment for
stereo data visualization and spatial interaction. Within such an
environment, users can be fully immersed in data exploration
tasks [13]. They can walk around/into the data visualization, in-
teract with data intuitively, collaborate, and share insights with
others. The embodied interaction [33], which emphasizes the in-
tegration of the user’s body, movements, and gestures, has been
utilized in spatial interaction design for the immersive environment.
Previous research indicated that embodiment is effective for data
comprehension and accurate 3D manipulation in rotation and pan-
ning tasks [5, 14, 17]. Meanwhile, two-handed interaction [37] has
been widely recognized as a more natural and intuitive interaction
technique in VR [16].

In this paper, we aim to explore the impact of different levels of
embodiment in asymmetric two-handed interactions, specifically
when both two hands collaborate to complete a single task. An
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example of such a task is MeTACAST [47], which employs three
effective selection techniques for selecting point cloud data in an
immersive World in Miniature (WIM). In this scenario, the visual-
ization is attached to the VR controller in the non-dominant hand,
while the dominant hand selects data from the WIM. To avoid col-
lisions between the two VR controllers, an offset of 35 cm was
introduced by attaching the data to the left controller, and the con-
tacting point of the selection hand was positioned 1 cm above the
top of the right controller. Similar issues also arise in other data
exploration tasks that require high precision. For example, when
domain researchers use Vivern [25] to design and examine DNA
origami nanostructures and explore multiple axes for presenting
multivariate data with two VR controllers [7].

Therefore, a comprehensive study is necessary to understand the
impact of embodied levels on both hands in asymmetric interactions
for data exploration tasks. To address this, we established six exper-
imental conditions based on various settings utilizing metaphors
for controlling the user’s hands. We compared these experimen-
tal conditions, focusing on two distinct tasks: 3D curve brushing
and 3D object manipulation. Based on the findings, we propose
suggestions for designing two-handed interaction techniques for
diverse visualization tasks with varying requirements, taking into
consideration user experience and expertise in VR.

2 RELATEDWORKS
2.1 Embodied Interaction
The concept of ”Embodied interaction” was introduced by Dour-
ish [9] and was later expanded into the Human-Computer Interac-
tion (HCI) community [38]. Previous literature has traditionally clas-
sified embodiment into distinct dimensions such as self-location [2],
agency [29], and body ownership [28]. In recent years, embodied
interaction has gained widespread attention for immersive data
exploration. Various approaches have been proposed to enhance
embodied interaction in data exploration. For instance, tangible
agents like tangible globes [34], tangible rings [36], and tangible
markers [3] have been utilized to facilitate data manipulation. An-
other way involves incorporating the human body, where aerial
gestures are used to interact with weather data [22], and hands are
employed to make embodied choices [6]. In the VR environment,
VR controllers are commonly employed to support embodied data
exploration [7, 25, 43, 45]. These techniques have demonstrated the
advantages of embodied interaction in immersive data exploration,
such as natural interaction and effective performance.

Many studies have also investigated the level of embodiment
in interaction techniques. For example, questionnaires have been
employed to measure users’ sense of embodiment in the VR envi-
ronment [15, 32]. Yang et al. [42] evaluated the use of embodied
navigation methods in abstract data visualization. Huang et al. [23]
compared network visualization environments with different levels
of embodiment. These investigations effectively explore both the
extent of embodiment and the impact of embodied interaction on
visualization tasks.

2.2 Asymmetric Two-handed Interaction
Most interactions in human daily life require the simultaneous use
of both hands to accomplish [26]. Research related to bimanual

movements reveals that two-handed actions can be categorized
as symmetric and asymmetric [16, 20, 24]. Two-hand interaction
shows the possibility of having better performance than using only
the dominant hand in VR [27, 39]. Especially, asymmetric two-
handed interaction has great potential in data exploration [19]. A
typical example of using asymmetric two-handed interaction for
data exploration is WIM [37]. This approach enables support for
users to control the exocentric view of 3D data using their non-
dominant hand, while using their dominant hand for intuitive and
easy-to-use interaction [30, 37, 46]. However, practical challenges
arise with the implementation of asymmetric two-handed interac-
tion for data exploration. An example is the need for an offset to
the controller to prevent collisions between the two hands during
3D data selection, as discussed in [47]. Therefore, when designing
two-handed interaction techniques for data exploration, decisions
must be made to balance the advantages of direct interactions with
practical considerations. Factors such as users’ experience and abil-
ities, task requirements, and other aspects need to be taken into
account. Consequently, we conducted a comprehensive user study
to explore the extent of embodiment and the impact of embodied
interaction in two-handed interactions for visualization tasks.

3 RATIONALE AND CONDITIONS
In this section, we elucidate the six experimental conditions and
provide the rationale for their selection. We incorporated the WIM
metaphor [30, 37, 46], which leverages the non-dominant hand to
hold the target visualization and the dominant hand to perform
actions on the visualization. We set the visualization size at 30 cm,
striking a balance between hand-sized and table-sized dimensions.
For the interaction metaphor, we opted for the virtual hand instead
of a virtual pointer to enhance users’ engagement and embodiment.
Experimental Conditions. The interaction metaphor for embodi-
ment can be classified as direct input (the point of contact is attached
directly to the controller) and indirect input (the contacting point
has an offset from the controller). The offset is set at 25 cm in the
positive direction of the controller’s grip, inspired by GO-GO [31].
We chose 25 cm offset based on a pilot study, which indicated that
this distance was the suitable position at which collisions could be
mostly avoided while still maintaining a sense of embodiment. We
established these two conditions for the dominant hand for actions.
For the non-dominant hand on purpose for visualization, we also
introduce an additional condition with the data visualization fixed
in the space [33]. Thus, combining the three settings (direct, indi-
rect and fixed) on visualization control and the two settings (direct
and indirect) on actions, we obtain six experimental conditions,
indicated as [non-dominant, dominant] in Figure 1 and Figure 2.

4 USER STUDY
We conducted a controlled user study to assess the impact of em-
bodiment level as well as the asymmetric two-handed interaction
in two different visualization tasks.

Participants.We recruited 24 unpaid participants (11 females,
13 males) from a local university, aged between 18 and 25 years
(M=22.5, SD=1.6), all of whom identified their right hand as domi-
nant. Regarding the expertise of VR, 6 participants reported weekly
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Figure 2: The conditions and characteristics.

experience, 5 reported monthly experience, and 13 reported using
VR once a year or never.

Apparatus. The study was conducted in an indoor arena of
approximately 3m × 3m with no obstacles. We used an all-in-one
VR head-mounted display Meta Quest Pro (1800 × 1920 resolution
per eye, 96° field of view, 90Hz refresh rate). We conducted the
study by streaming on a Windows 10 PC (Intel Core™ i7 2.21GHz,
32GB RAM, GeForce RTX 3070, 24GB video memory).

Figure 3: Two tasks: 3D curve brushing task (left) and 3D
object manipulation task (right).

Tasks and Data.Our experiment contained two tasks, as shown
in Figure 3. In the brushing task, participants were instructed to use
a continuous input approach to brush along a 3D curve, aiming to
match their input as closely as possible to the target curve. Partici-
pants were directed to provide their input in a single pass, starting
from the initiation of the controller trigger press to its release. If the
input was interrupted in the middle, they were allowed to restart
the brushing. A virtual ball served as an indicator, displaying the
point of contact. In the manipulation task, participants were tasked
with aligning candidate objects to the target object. Participants
could make multiple steps, initiating each manipulation from the
trigger press to its release. To aid participants in aligning the objects
correctly, a purple dot was incorporated into the model to indicate
the orientation of both the candidate object and the target object.
We rendered tubular Bezier curves and double helix models using
mathematical functions and open-source DNA sequences [41]. An
example of the Bezier curve and double helix model in the tasks
is shown in Figure 4. To minimize the learning effect, the position
and orientation of the target were altered across trials within each
repetition of the experimental condition.

Figure 4: An example of the Bezier curve (left) and double
helix model (right) generated from a set of data.

Procedure. The study consisted of a training session and an ac-
tual experiment session. The whole study lasted for approximately
one hour for each participant. During the training session, we
trained participants with additional data for each condition. They
were instructed on completing the tasks using VR controllers and
were allowed to make as many attempts as necessary to develop
suitable strategies. In the actual experiment, they were instructed
to carry out the task with both speed and precision without re-
ceiving any feedback regarding the outcome of their performance.
Participants were allowed to redo the tasks, with the time taken
being recorded. Once they believed they had achieved a satisfac-
tory result, they could press a button to finish the trial. For each
condition, we asked participants to evaluate their workload and
fatigue with NASA’s Task Load Index [18], as well as assessments
of the sense of embodiment by VEQ [32] and pESQ [15]. Between
the conditions, participants were given a five-minute break. After
two tasks, participants were asked to rank the six conditions and
provide their reasons in a semi-structured interview.

Design. The order of tasks and datasets in the experiment was
constant, with the brushing task conducted first followed by the
manipulation task. The order of the six experimental conditions was
counterbalanced through a balanced Latin square. Each participant
was given a specific 𝑃ID, where the ID was unique and ∈ [0, 23].
We used “𝑃ID mod 6” to balance the condition order. The study was
conducted using an accompanying 3-factor within-subjects design
with 3 repetitions of each condition. In total, we had 24 participants
× 2 tasks × 6 conditions × 2 datasets × 3 repetitions = 1728 trials.

Measures. To minimize the influence of initial effects on the
experimental data, we excluded data from the first repetition of
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each condition, resulting in a dataset comprising 1440 trials. We
recorded task completion time, measured from the trial’s initiation
to the participant pressing the submit button. Accuracy was as-
sessed by calculating positional distance between the input and
the target. For the brushing task, the Modified Hausdorff Distance
[12] was employed to quantify errors, while in the manipulation
task, the average distance of all model points [21] was computed.
Furthermore, we also recorded the number of attempts to complete
the task in each trial, which indicates the number of additional
repetitions the user needs to complete the task.

Hypotheses. Building upon the literature review and our analy-
sis, we formulated the hypotheses as follows:
• H1. Introducing an offset to the dominant action hand reduces
the sense of embodiment in task performance, leading to de-
creased accuracy and longer completion time.

• H2. Introducing an offset to the non-dominant visualization
control hand would not have a clear impact on accuracy and
completion time.

• H3. In the Fixed (non-dominant) conditions, the visualization is
stable but requires physical body movements for observing 3D
data, resulting in reduced accuracy and longer completion time.

• H4. Symmetric offsets, applied to both hands or neither, would
outperform asymmetric offsets, resulting in increased accuracy
and faster completion time.

• H5. Conditions emphasizing direct action hand and minimizing
hands collision are expected to be preferred.
The rationale forH1 is that introducing an offset to the dominant

hand may disrupt the natural alignment between users’ physical
hand movements and their virtual representation in the VR envi-
ronment. This misalignment could result in decreased accuracy
and longer completion times, as participants may struggle to ac-
curately translate their intentions into actions within the virtual
space. Furthermore, the non-dominant hand, typically more in-
volved in visualization control and navigation tasks, may be less
affected by spatial offsets, leading to H2. However, in conditions
where the position of the visualization is fixed in VR, users may
need to physically reposition themselves to achieve optimal views
of the data. This additional physical effort could lead to reduced
accuracy and longer completion times, as they may spend more
time adjusting their position to interact effectively with the data,
leading to H2. Additionally, H4 is proposed because symmetric
offsets applied to both hands or neither may offer a more consistent
and predictable interaction experience. Users may find it easier
to adapt to symmetric offsets due to their balanced and uniform
nature, potentially resulting in smoother task performance and
increased user satisfaction. Lastly,H5 is proposed because direct
interaction methods typically provide more intuitive control, lead-
ing to smoother task performance. Minimizing collisions between
hands can further enhance the overall user experience by reducing
frustration and physical discomfort during interaction.

5 RESULTS
Due to limitations of null hypothesis significance testing (NHST) [4,
8, 10, 11], we state results by estimation techniques with effect sizes
and confidence intervals recommended by APA [44], as well as 𝑝-
value statistics. We performed a logarithmic transformation of the

completion time to satisfy the normality assumption. Subsequently,
we applied linear mixed modeling to independent variables [35]
rather than repeated measures ANOVA, since the former is not
bound by sphericity and can model more than two independent
variables considering both group and individual differences [1]. To
be more specific, we modeled the independent variables and their
interactions as fixed effects, incorporating random intercepts for in-
dividual participants within groups. The significance of these fixed
effects was assessed using log-likelihood ratios. We then conducted
Tukey’s HSD post-hoc tests for least squares pairwise compar-
isons [35]. For the dependent variables—including error, sense of
embodiment, task load, and preference rating—that did not meet
the criteria for normal distribution, we employed the Friedman test
to assess the influence of the independent variables. Pairwise com-
parisons were then conducted with the Wilcoxon signed-rank test,
adjusting p-values using the Bonferroni method. Effect sizes were
computed using means and confidence intervals were determined
via the BCa Bootstrap [40].

5.1 Results on offset of Dominant Action Hand
The results have been reported in Figure 5. Three conditions involve
offsets on the dominant action hand (D+I, I+I, and F+I). We compare
them with the corresponding conditions without offsets.

Accuracy. The results indicated that all indirect action condi-
tions were less accurate in both tasks. In the brushing task, the
differences between D+I and D+D (𝑝 = .009), between I+I and I+D
(𝑝 < .001), and between F+I and F+D (𝑝 < .001), were statistically
significant. In the manipulation task, the differences between I+I
and I+D (𝑝 < .001), and between F+I and F+D (𝑝 = .008) were statis-
tically significant, whereas the difference between D+I and D+D (𝑝
= .472) was insignificant.

Speed. Completion times were consistently longer in the indi-
rect action conditions for both brushing and manipulation tasks,
although the differences between D+I and D+D (brushing: 𝑝 = .913,
manipulation: 𝑝 = .957), between I+I and I+D (brushing: 𝑝 = .657,
manipulation: 𝑝 = .165), and between F+I and F+D (brushing: 𝑝 =
.102, manipulation: 𝑝 = .758), were found to be insignificant.

Therefore, the introduction of an offset to the dominant action
hand resulted in decreased accuracy and longer completion times.
H1 is supported.

5.2 Results on offset of Visualization Control
Four conditions involve visualization control: D+D, I+D, D+I, and
I+I. Among them, D+D and D+I do not involve offsets.

Accuracy. In the brushing task, the direct visualization control
condition D+D was slightly less accurate than I+D (𝑝 = .337). How-
ever, D+I was more accurate than I+I (𝑝 = .534). In the manipulation
task, D+D was slightly less accurate than I+D (𝑝 = .589). All these
differences were insignificant. However, D+I was significantly more
accurate than I+I (𝑝 = .049) in the manipulation task.

Speed. In the brushing task, both direct visualization control
conditions were faster than the corresponding indirect conditions.
The differences, between D+D and I+D (𝑝 = .721), between D+I and
I+I (𝑝 = .943), were insignificant. In the manipulation task, D+D
was slower than I+D (𝑝 = .69), but the time costs of D+I and I+I
were comparable.



Exploring Embodied Asymmetric Two-Handed Interactions for Immersive Data Exploration CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: Accuracy (error) and completion time in two tasks. Significance levels: 𝑝 < .05(*), 𝑝 < .01(**), and 𝑝 < .001(***).

Therefore, we did not observe an obvious impact of accuracy
and completion time on visualization control with offset. H2 was
supported.

5.3 Results on Fixed Visualization Environment
Two conditions, F+D and F+I, establish a stable visualization envi-
ronment, facilitating one-hand interaction in the tasks.

Accuracy. In the brushing task, the accuracy of F+D, D+D and
I+D was comparable. For the indirect action conditions, F+I was
slightly more accurate than I+I but the difference was insignificant.
In the manipulation task, the accuracy of F+D was lower than D+D
(𝑝 = .238) and I+D (𝑝 = .19). The differences were insignificant.
Among the indirect action conditions, F+I was significantly less
accurate than D+I (𝑝 = .003).

Speed. In the brushing task, F+D was significantly faster than
D+D (𝑝 = .035). Although F+I was slightly faster than D+I and I+I,
the differences were not statistically significant. In the manipulation
task, F+D was slightly faster than D+D. F+I was slightly faster than
D+I and I+I. All these differences were insignificant.

Thus, fixed visualization did not result in reduced accuracy or
longer completion time in the tasks. H3 was rejected.

5.4 Results on Symmetric/Asymmetric Offsets
Two conditions, D+D and I+I, establish symmetric settings with
respect to the offset level on both the dominant hand (action) and
the non-dominant hand (visualization control). In the case of I+I,
a 25 cm offset is applied to both hands, ensuring symmetry. On
the other hand, D+D provides a direct approach, allowing for both
visualization control and action without any applied offset. In con-
trast, the other two conditions, D+I and I+D, present asymmetric
settings, featuring a 25 cm offset applied to only one of the hands.

Accuracy. In the brushing task, D+D was significantly more
accurate than D+I (𝑝 = .009). However, it was slightly less accurate
than I+D but the difference was insignificant. I+I was less accu-
rate than I+D and D+I. The difference between I+I and I+D was
significant (𝑝 < .001). In the manipulation task, D+D was less ac-
curate than I+D but more accurate than D+I, with insignificant
differences. However, I+I was significantly more accurate than I+D
(𝑝 < .001) and D+I (𝑝 = .049). In both tasks, D+D was significantly
more accurate than I+I (Brushing: 𝑝 < .001, manipulation: 𝑝 < .001).

Speed. In the brushing task, both D+D and I+I were slower
than I+D but faster than D+I. All the differences were insignificant.
Moreover, D+D and I+I were comparable regarding the speed. In

the manipulation task, similar patterns were detected. The only
difference was that I+I and D+I had a similar speed.

Therefore, these findings do not provide sufficient evidence to
show that symmetric settings regarding offset level on both hands
result in increased accuracy or decreased completion time.H4 is
not supported.

5.5 Results on Subjective Ratings
We further report the overall subject ratings regarding user prefer-
ence (Figure 6). For a more detailed analysis of subject ratings on
the sense of embodiment and task load, please refer to Appendix B.
In the brushing task, I+D and F+D exhibited similarly high scores.
F+D scored significantly higher than D+D (𝑝 = .004), D+I (𝑝 < .001),
I+I (𝑝 = .024), and F+I (𝑝 = .004). I+D scored significantly higher
than D+I (𝑝 = .004) and I+I (𝑝 = .007), and was higher than D+D,
although not significantly. Similarly, in the manipulation task, both
I+D and F+D received higher ratings compared to other conditions.
Significant differences were observed between I+D and D+I (𝑝 <
.001), I+D and I+I (𝑝 < .001), I+D and F+I (𝑝 < .001), F+D and D+I (𝑝
= .006), and F+D and F+I (𝑝 = .042). However, the difference between
I+D and F+D (𝑝 = .637) was found to be insignificant. Hence, the
conditions I+D and F+D, utilizing direct action and indirect visu-
alization control, were preferred. H5 was supported. The primary
reason may be attributed to the high sense of embodiment, low
physical effort, and reduced time pressure they offer compared to
other conditions, as analyzed in Appendix B.

5.6 Observation and Qualitative Feedback
Observation. In the study, we noticed a higher incidence of two-
handed obstruction in the D+D condition and, to a lesser extent,
in the D+I condition. In addition, we also noticed that users have
different strategies and behaviors in the two tasks. In the brushing
task, participants tended to stabilize the visualization to create a
stable environment when using the non-dominant action hand.
The number of attempts in the F+D condition was lower than in
other conditions, with counts for the remaining conditions being
comparable. In the manipulation task, participants attempted to use
both two hands to move the object to target positions. Compared to
F+I, participants made significantly fewer adjustments with D+D
(𝑝 = .039), I+D (𝑝 = .004), and D+I (𝑝 = .002).

Qualitative Feedback. We gathered participants’ feedback on
their preferences and task experiences through semi-structured
interviews. Regarding the dominant hand, the direct setting was
praised for providing a more natural and immersive experience (10
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Figure 6: The user preference rating of conditions in two tasks.
Significance levels: 𝑝 < .05(*), 𝑝 < .01(**), and 𝑝 < .001(***).

Figure 7: The number of attempts in the two tasks. Significance
levels: 𝑝 < .05(*), 𝑝 < .01(**), and 𝑝 < .001(***).

times) and offering better input depth perception (3 times). How-
ever, the offset magnified errors were caused by body swaying (15
times), even though it required less body motion (8 times). Regard-
ing the non-dominant hand, participants liked visualization control,
benefits such as enhanced observation (4 times in the manipulation
task), real-life experiences of holding an object (3 times). Apply-
ing an offset to the non-dominant hand had a minimal impact on
task completion. However, fixed visualization was reported to re-
quire additional body movement in space (14 times), although it
aided in understanding the spatial location of the data.Concerning
two-handed coordination, two-handed collisions were reported
frequently in D+D (25 times) and D+I (3 times). Additionally, sym-
metric settings for both hands, such as both direct or both with
offset, were mentioned 7 times as providing a more coordinated
feeling. We further reported our findings considering participants
with varying levels of VR experience in Appendix C and Figure 10.

6 DISCUSSION
Impact of Level of Embodiment in Asymmetric Interactions.
On the one hand, direct action provides a higher sense of embodi-
ment in WIM-based asymmetric tasks, highlighting its importance
in task completion. In contrast, the offset of visualization did not
affect task performance. We assume the main reason is that the
visualization control hand functions as supplementary support,
primarily aiding users in observing data from various directions.
Although, to some extent, the introduction of an offset would cause
users to feel it was an indirect manipulation, the advantages are also
clear. The offset reduces the chance of two hands collisions. More-
over, the requirement for users’ arm movements is not as much as
in the direct manipulation. On the other hand, we also noticed that
frequent two-handed collisions would significantly affect perfor-
mance. Although D+D provides a high sense of embodiment, it did
not show better accuracy but took a longer time compared to other
direct action conditions. We assume the reason was because of the
frequent collisions, users would need to restart their interactions.
Thus, even though its advantage of embodiment was noticed, only
8.3% of participants selected it as the most preferred condition in
the brushing task. Considering all these aspects, the asymmetric
setting I+D seems to be an appropriate choice since it provides
direct action and avoids collisions in two-handed interactions.

Another appropriate choice is F+D. F+D achieved comparable
accuracy compared to direct action conditions and higher accuracy
compared to all other indirect action conditions, but it was noticed

as the fastest method in both tasks. We assume the reason is that
this condition provides direct action in the stable visualization
environment. While users move around the fixed visualization,
it also enhances their engagement in the data exploration. This
dynamic interaction allows users to explore the data from various
perspectives, fostering deeper engagement and understanding. As
a result, it was scored by participants as a noticeably preferred
condition in the brushing task.

Two-handed Interaction. Two-handed coordination stands
out as a significant aspect deserving thorough discussion. The two
tasks in the study impose distinct requirements on the collaboration
between the two hands. In the brushing task, the non-dominant
hand plays a pivotal role in supporting users by stabilizing data vi-
sualization, necessitating the establishment of a stable environment.
This setup allows users to employ the dominant hand for precisely
brushing data in the correct positions. Given that users also need to
verify if the input aligns with the target curve, a fixed position for
the data visualization appears to be optimal. Conversely, in the ma-
nipulation task, users needed to manipulate data with six degrees
of freedom (6 DOF) to obtain the optimal view of the target location.
Here, the non-dominant hand not only aids users in observing data
but also assists the dominant hand in aligning the object to the
target position. Consequently, for tasks demanding high precision,
we recommend creating a stable environment—such as fixing the
visualization in a specific position—which not only facilitates users’
spatial awareness during data exploration but also supports precise
interaction through direct engagement and explicit indication of
the point of contact.

For tasks requiring users to observe data from various view-
points, it is advantageous to empower them to manipulate the data
effectively with 6 DOF. Thus,WIM design proves to be user-friendly,
with data visualization held in the non-dominant hand. Particularly
in data exploration, where many visualization tasks demand multi-
tasking from both hands, WIM design enables users to manipulate,
for instance, a clipping plane for observing data features on a 2D
slice. In such cases, both hands can be utilized to find the optimal
position or orientation of the 2D slice—one hand holding the data
visualization while the other manipulates the cutting plane.

However, it is also crucial to consider the VR experience con-
cerning two-handed coordination. While experienced VR users
adeptly navigate two-hand settings, novices tend to prefer fixed
visualization instead.
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7 CONCLUSION
This study focuses on a controlled user study that compared six
experimental conditions for two visualization tasks: curve brushing
and object manipulation. These tasks showcase distinct require-
ments in terms of precision, object observation, and two-handed
coordination. We presented our key findings and offered recom-
mendations for the design of two-handed interaction techniques
in the context of data visualizations. However, our study did not
examine users’ ability of two-handed coordination, as well as be-
havioral and ergonomic metrics for embodied interaction, which
could be further studied. Moreover, currently, we interact with data
using VR controllers and virtual hands as the visual metaphor. For a
more embodied approach, we plan to investigate the impact of em-
bodiment and two-handed coordination when employing mid-air
gestures for data exploration.
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Appendix

In this appendix, we offer additional tables, graphs, and charts. In
the graphs, significance levels are denoted as 𝑝 < .05(*), 𝑝 < .01(**),
and 𝑝 < .001(***) with corresponding stars.

A TASK PERFORMANCE AND PREFERENCE
RATING

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D .652cm [.608, .706] .127cm [.109, .150]
I+D .622cm [.587, .662] .118cm [.103, .135]
F+D .647cm [.604, .707] .143cm [.122, .166]
D+I .710cm [.666, .764] .146cm [.120, .185]
I+I .772cm [.714, .848] .189cm [.163, .223]
F+I .722cm [.674, .780] .198cm [.172, .229]

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D .595cm [.545, .656] .111cm [.091, .135]
I+D .550cm [.518, .590] .098cm [.079, .126]
F+D .556cm [.520, .599] .148cm [.119, .185]
D+I .624cm [.588, .665] .116cm [.092, .152]
I+I .723cm [.655, .839] .175cm [.146, .207]
F+I .638cm [.594, .684] .191cm [.157, .234]

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D .700cm [.635, .790] .141cm [.112, .176]
I+D .682cm [.630, .743] .134cm [.114, .158]
F+D .723cm [.650, .811] .138cm [.111, .173]
D+I .782cm [.711, .868] .171cm [.130, .239]
I+I .814cm [.737, .932] .202cm [.158, .256]
F+I .792cm [.713, .887] .205cm [.168, .252]

Table 1: Mean task error and 95% confidence intervals for
overall (top), VR users (middle), and novices (bottom).

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D 27.661s [24.933, 30.688] 23.354s [21.222, 25.700]
I+D 25.206s [23.125, 27.474] 20.993s [18.954, 23.251]
F+D 22.724s [20.601, 25.067] 21.114s [18.870, 23.624]
D+I 29.578s [27.094, 32.291] 24.853s [22.402, 27.571]
I+I 27.848s [25.337, 30.607] 24.974s [22.690, 27.488]
F+I 26.953s [24.794, 29.300] 23.295s [20.997, 25.845]

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D 27.488s [23.811, 31.733] 24.379s [20.950, 28.370]
I+D 25.362s [22.849, 28.152] 22.874s [19.583, 26.717]
F+D 23.755s [21.063, 26.792] 21.922s [18.449, 26.048]
D+I 29.373s [26.128, 33.022] 23.308s [19.736, 27.526]
I+I 29.413s [26.389, 32.783] 27.125s [23.538, 31.258]
F+I 26.677s [23.901, 29.775] 22.740s [19.059, 27.132]

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D 27.808s [23.869, 32.398] 22.520s [19.864, 25.530]
I+D 25.074s [21.894, 28.717] 19.523s [17.025, 22.388]
F+D 21.887s [18.783, 25.503] 20.453s [17.565, 23.816]
D+I 29.753s [26.080, 33.945] 26.240s [22.961, 29.988]
I+I 26.589s [22.870, 30.913] 23.288s [20.419, 26.559]
F+I 27.188s [23.961, 30.850] 23.775s [20.964, 26.963]

Table 2: Mean task time and 95% confidence intervals for
overall (top), VR users (middle), and novices (bottom).

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D 3.167 [2.583, 3.792] 3.708 [2.958, 4.417]
I+D 4.625 [3.958, 5.125] 5.208 [4.833, 5.500]
F+D 4.875 [4.250, 5.375] 4.208 [3.583, 4.708]
D+I 2.583 [2.125, 3.042] 2.208 [1.833, 2.667]
I+I 2.667 [2.042, 3.375] 2.750 [2.167, 3.417]
F+I 3.083 [2.500, 3.667] 2.917 [2.458, 3.458]

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D 3.364 [2.545, 4.364] 3.818 [2.636, 4.818]
I+D 4.909 [4.091, 5.545] 5.455 [5.000, 5.818]
F+D 4.636 [3.727, 5.364] 3.909 [3.182, 4.727]
D+I 2.364 [1.636, 3.273] 2.364 [1.727, 3.182]
I+I 2.909 [2.182, 3.727] 2.818 [2.000, 3.727]
F+I 2.818 [1.909, 3.727] 2.636 [1.909, 3.364]

Condition
Curve Brushing Object Manipulation

Effect Size CI Effect Size CI

D+D 3.000 [2.231, 3.769] 3.615 [2.538, 4.615]
I+D 4.385 [3.385, 5.077] 5.000 [4.385, 5.462]
F+D 5.077 [4.154, 5.692] 4.462 [3.385, 5.077]
D+I 2.769 [2.231, 3.231] 2.077 [1.615, 2.615]
I+I 2.462 [1.615, 3.615] 2.692 [1.846, 3.692]
F+I 3.308 [2.538, 4.000] 3.154 [2.615, 3.846]

Table 3: Mean preference rating and 95% confidence intervals
for overall (top), VR users (middle), and novices (bottom).

B SUBJECTIVE RATINGS ON SENSE OF
EMBODIMENT AND TASK LOAD

Sense of Embodiment. In both tasks, the direct action conditions
scored higher for self-location, agency, and body ownership than
the indirect action conditions (Figure 8). I+D had higher agency
(brushing: 𝑝 = .01) and body ownership (brushing: 𝑝 = .035,
manipulation: 𝑝 = .014) scores than I+I, and D+D had higher
agency (brushing: 𝑝 = .009) scores than D+I. F+D was significantly
higher than F+I on self-location (brushing: 𝑝 = .016, manipulation:
𝑝 = .04), agency (brushing: 𝑝 = .013, manipulation: 𝑝 = .017), and
body ownership (brushing: 𝑝 = .043, manipulation: 𝑝 = .03) scores
in two tasks.
Task Load. The scores of direct action conditions are higher than
the indirect action conditions in both two tasks (Figure 9). In the
brushing task, I+D and F+D provided better experiences. However,
there were no significant differences except between F+D and F+I
(𝑝 = .022), and between I+D and I+I (𝑝 = .018) in time pressure. In
the manipulation task, differently, I+D demonstrated better
experiences. Specifically, the I+D condition was significantly better
than I+I in terms of mental (𝑝 = .002), physical (𝑝 = .012), temporal
(𝑝 = .02), and effort (𝑝 = .02).

C RESULTS ON USERS WITH DIFFERENT VR
EXPERIENCES

The comprehensive results are presented in Appendix A. Overall,
VR users exhibited higher accuracy compared to novices in both
tasks. Notably, participants utilized less time in the F+D condition
compared to other conditions, while maintaining comparable
accuracy.
In the brushing task, the performance patterns across the six
conditions were consistent for both novices and VR users.
However, in the manipulation task, there were slight variations in
performance patterns between novice and VR users. Specifically,
for VR users, F+D was less accurate than D+I, whereas for novice
users, F+D was more accurate.
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Figure 8: The sense of embodiment in two tasks. Significance levels: 𝑝 < .05(*), 𝑝 < .01(**), and 𝑝 < .001(***).

Figure 9: The task load in two tasks. Significance levels: 𝑝 < .05(*), 𝑝 < .01(**), and 𝑝 < .001(***).

Although differences in time and accuracy were not prominently
observed, we did notice some findings from users’ experiences. In
general, I+D and F+D were more preferred in both tasks. VR users

consistently rated I+D the highest in both tasks, while novice users
rated F+D the highest in the curve brushing task.
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Figure 10: Accuracy (error) (left), completion time (center), and user preference rating (right) of VR users (top) and novices
(bottom) in two tasks. Significance levels: 𝑝 < .05(*), 𝑝 < .01(**), and 𝑝 < .001(***).
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